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Abstract. In the study of various spatial engineering problems (e.g. heat and mass transfer in multilayer media, 

diffusion and combustion processes), it is necessary to use 3-D partial differential equations (PDE), the solving of 

which is difficult. Therefore, in solving these problems, we apply the conservative averaging method. The 

conservative averaging method as an approximate analytical and numerical method for solving PDE or their 

systems with piece-wise constant (continuous) coefficients is under question. We consider averaging methods for 

solving the stationary 3-D boundary value problem of second order with piece-wise parameters in the 3-D domain 

for special source function. The hyperbolic-type splines, which interpolate middle integral values of a piece-wise 

smooth function, are considered. With the help of these splines, some boundary value problems of mathematical 

physics in 3-D with piece-wise coefficients are reduced to boundary value problems for ordinal differential 

equations in 1-D for one coordinate. The usage of this spline allows for diminishing the dimensions of the initial 

problem per one. The spline solution is used for different coordinates, in Cartesian coordinates, in cylindrical 

coordinates with axial symmetry and in spherical coordinates with axial symmetry. The analytical solution of the 

1-D problem (boundary value problem for the ordinal differential equation) was compared with the corresponding 

spline function solution in the previously mentioned coordinates. Calculations to test theoretical assumptions and 

perform numerical experiments were proceeded with MATLAB. 

Keywords: PDE, 3-D boundary value problem, conservative averaging method, 1-D initial value problem. 

1. Introduction 

Heat, mass transfer, and diffusion problem solutions in the 3-D domain are used by numerical and 

analytical methods. In [1], the three-dimensional hyperbolic and parabolic heat conduction equations 

with time-dependent, non-uniform distributed heat source is analytically solved in a finite solid cube. 

The straightforward solution is introduced for hyperbolic and parabolic conduction using eigen function. 

The Eigen function expansion method introduces the closed form solution of both Fourier and non-

Fourier profiles. The paper [2] presents the 3D heat flow model for modelling heat transfer during 

diffusional phase transformations, which is based on LBM (Lattice Boltzmann method). This model 

considers the enthalpy of transformation. The work [3] proposed and solved inverse anomalous diffusion 

problems considering real data, a fractional hyperbolic advection-dispersion equation and differential 

evolution. To evaluate the direct problem, the extension of the classical finite difference method was 

proposed. In the inverse problem context, all the phenomenological models were able to obtain good 

estimates for the concentration profiles in both applications.  

To improve study processes, various types of splines are widely used in modeling. In recent years, 

several new splines defined in nonpolynomial spaces have been proposed. C-B-splines were introduced 

in [4; 5]: A linearly parametrized set of curves, named C-curves, are an extension of cubic curves; they 

depend on a parameter a > 0, and their limiting case for a → 0 is a cubic curve. C-B-splines are 

introduced as extensions of cubic uniform B-splines. Exponential B-splines have been studied in [6]: 

some results for exponential B-splines in tension are extended to higher order exponential B-splines. 

But these bases do not overlap in the cases of high order. The classification of UE-splines and the 

relationship of all kinds of existing splines are shown in [7]: the three types refer to polynomial, 

trigonometric and hyperbolic splines, which in this paper is unified and extended by a new kind of spline 

(UE-spline). Hyperbolic-polynomial splines, important in several applications, are a natural 

generalization of polynomial splines consisting of piecewise-defined functions with segments. Three-

dimensional diffusion problems with discontinuous coefficients and one-dimensional Dirac sources are 

considered in [8]. The Dirac measure is, for example, a model of a loaded fiber or wire. Using 

superposition, the study covers the case of multiple line sources. Curvilinear sources can be encountered 

in various fields of science and various branches of engineering: solid and liquid mechanics [9; 10] is 

considered as a fractured porous medium that is studied at a scale such that the fractures can be modelled 

individually, models for flow in which the fractures are interfaces between subdomains are presented 
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[11]; in this paper is considered the coupling between two diffusion-reaction problems, one taking place 

in a three-dimensional domain Ω, the other in a one-dimensional subdomain Λ. 

A computational methodology to simulate the diffusion of ions from point sources (e.g. ion 

channels) is described [12]. The outlined approach computes the ion concentration from a cluster of 

many ion channels at pre-specified locations as a function of time using the theory of propagation 

integrals. Modeling was done in 3 geometries – planar symmetry, cylindrical symmetry and spherical 

symmetry. 

Often, solving these problems is complex and laborious. In addition, determining the accuracy of 

the results is problematic. Using special splines, it is possible to reduce the PDE problem to ODE. 

A. Buikis in [13], 2017, gives a short history of conservative averaging method in the last 100 years. 

The main idea of CAM is that the new problem formulation in the main domain has fulfilled all energy 

peculiarities and fulfils conservation laws. CAM is considered with hyperbolic and parabolic functions. 

These methods were applied for the mathematical simulation of the mass transfer process in multi-

layered underground systems, the mathematical foundation has been provided in the Doctor of sciences 

thesis 1987 [14].  

With the help of created splines, the special 3-D problems of mathematical physics in one layer 

with piece-wise coefficients are reduced to problems for ODE in 1-D [15].  

In this paper, we consider averaging and finite difference methods for solving the 3-D boundary 

value problem in the multi-layered domain. We consider the metals Fe and Ca concentration in the 

layered peat blocks. Using experimental data, the mathematical model for calculation of the 

concentration of metals in different points in peat layers is developed. A specific feature of these 

problems is that it is necessary to solve the 3-D boundary value problems for elliptic-type partial 

differential equations (PDEs) of second order with piece-wise diffusion coefficients in the layered 

domain. We develop here a finite-difference method for solving a problem of one, two and three peat 

blocks with periodical boundary conditions in the x direction. This procedure allows us to reduce the 3-

D problem to a system of 2-D problems by using a circulant matrix. 

The conservative averaging method (CAM) was developed as an approximate analytical and/or 

numerical method for solving a partial differential equation or its system with piece-wise constant 

(continuous) coefficients. The usage of this approximate method for separate relatively thin sub-domain 

or/and subdomain with a large heat conduction coefficient leads to a reduction of domain in which the 

solution must be found. To apply this method for all sub-domains of layered media, a special type of 

spline was constructed: the integral averaged values interpolating parabolic spline. The usage of this 

spline allows diminishing the dimensions of the initial problem per one. It is important that in all cases, 

the original problem with discontinuous coefficients from Rn + 1 transforms to a problem with continuous 

coefficients in Rn. These methods were applied for the mathematical simulation of the mass transfer 

process in multi-layered underground systems [16]. 

CAM as an approximate method for solution of some direct and inverse heat transfer problems is 

given in [17], here the solution is approximated with a polynomial: the conservative averaging method 

was developed as an approximate analytical and/or numerical method for solving partial differential 

equation or its system with piece-wise constant (continuous) coefficients. A method of conservative 

averaging for ill-posed inverse problems in some cases allows transforming them to well-posed inverse 

problems. Similarly, heat conduction problem for double layered ball is discussed [18]: heat conduction 

models for double layered spherical sample are developed. Parabolic (classic, based on Fourier’s Law) 

and hyperbolic (based on Modified Fourier’s Law) heat conduction equations are used to describe 

processes in the sample during Intensive Quenching. Solution and numerical results are obtained for the 

1-D model using the conservative averaging method and transforming the original problem for a sphere 

to a new problem for a slab, with non-classic boundary condition. Models include boundary conditions 

of the third kind and non-linear BC case. Numerical results are presented for several relaxation time and 

initial heat flux values. CAM with special splines for solving of diffusion-convection problems with 

discontinuous coefficients for layered materials exposed to fire is shown in [19]: the temperature was 

calculated through the two layered material of gypsum products exposed to fire and the calculations 

were compared with the results obtained in the experiment at the Faculty of Environment of the Latvia 

University of Life Sciences and Technologies. 
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In [20] hyperbolic type splines are used for the solving heat and mass transfer 3-D problem in 

porous multi-layered axial symmetry domain: the approximation of the corresponding initial boundary 

value problem of the system of PDEs is based on the conservative averaging method (CAM) with special 

integral splines, this procedure allows reduce the 3-D axis-symmetrical transfer problem in multi-

layered domain described by a system of PDEs to initial value problem for a system of ordinary 

differential equations (ODEs) of the first order. The special hyperbolic type approximation is used for 

solving the 3-D diffusion problem [21]: with the help of these splines, the initial boundary value problem 

(IBVP) concerning one coordinate is reduced to problems for a system of equations in the 2-D domain. 

This procedure also allows the reduction of the 2-D problem to a 1-D problem, and thus, the solution of 

the approximated problem can be obtained analytically. The accuracy of the approximated solution for 

the special 1-D IBVP is compared with the exact solution of the studied problem obtained with the 

Fourier series method. 

In this paper, the special spline with two different functions, which interpolates middle integral 

values of piece-wise smooth function, is considered. Special hyperbolic and parabolic-type splines are 

developed for Cartesian, cylindrical and spherical coordinates. With the help of these splines, the special 

3-D problems of mathematical physics in one layer with piece-wise coefficients transform to problems 

for ODE in 1-D. These splines contain parameters where they can be chosen for decreasing the error of 

the solution. In the limit case when for the hyperbolic spline the parameter tends to zero, we have the 

integral parabolic spline, obtained from A. Buikis. 

2. Materials and methods 

We have considered 3-D stationary diffusion problems with special source functions in different 

coordinates: Cartesian, cylindrical with axial symmetry and spherical coordinates with axial symmetry. 

We have obtained the analytical solutions of the corresponding boundary value problem for ODEs. 

2.1. Formulation of problem in Cartesian coordinates 

The process of diffusion is considered in 3-D parallelepiped 

 Ω =  {(𝑥, 𝑦, 𝑧): 0 ≤  𝑥 ≤  𝐿𝑥 , 0 ≤  𝑦 ≤  𝐿𝑦, 0 ≤  𝑧 ≤  𝐿𝑧}. 

We will consider the stationary 3-D problem of the linear diffusion theory. We will find the 

distribution of concentrations 𝑐 =  𝑐(𝑥, 𝑦, 𝑧) in 𝛺 at the point (𝑥, 𝑦, 𝑧) by solving the following special 

3-D boundary value problem for partial differential equation (PDE) with the source function (cosine-

function) dependent on the 𝑥, 𝑦-directions: 

  𝜕

𝜕𝑥
(𝐷𝑥

𝜕𝑐

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑦

𝜕𝑐

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐷𝑧

𝜕𝑐

𝜕𝑧
) + 𝑓0 cos

𝜋𝑥

2𝐿𝑥
cos

𝜋𝑦

2𝐿𝑦
= 0  

 𝜕𝑐(0, 𝑦, 𝑧)

𝜕𝑥
=

𝜕𝑐(𝑥, 0, 𝑧)

𝜕𝑦
= 0, 𝑐(𝐿𝑥 , 𝑦, 𝑧) = 0, 𝑐(𝑥, 𝐿𝑦, 𝑧) = 0  

 
𝐷𝑧

𝜕𝑐(𝑥, 𝑦, 0)

𝜕𝑧
− 𝛽𝑧 (𝑐(𝑥, 𝑦, 0) − 𝑐0𝑐𝑜𝑠

𝜋𝑥

2𝐿𝑥
𝑐𝑜𝑠

𝜋𝑦

2𝐿𝑦
) = 0 (1) 

 
𝐷𝑧

𝜕𝑐(𝑥, 𝑦, 𝐿𝑧)

𝜕𝑧
+ 𝛼𝑧 (𝑐(𝑥, 𝑦, 𝐿𝑧) − 𝑐𝑎𝑐𝑜𝑠

𝜋𝑥

2𝐿𝑥
𝑐𝑜𝑠

𝜋𝑦

2𝐿𝑦
) = 0  

where  𝑓0, 𝑐0, 𝑐𝑎 – fixed constants; 

 𝐷𝑥 , 𝐷𝑦, 𝐷𝑧 – constant diffusion coefficients; 

 α𝑧, 𝛽𝑧 – constant mass transfer coefficients for the 3 kind boundary conditions.  

We can obtain the analytical solution of (1) in the following form: 

𝑐(𝑥, 𝑦, 𝑧) =  𝑔(𝑧)𝑐𝑜𝑠
𝜋𝑥

2𝐿𝑥
𝑐𝑜𝑠

𝜋𝑦

2𝐿𝑦
,  

where the function 𝑔(𝑧) is the solution of boundary value problem for ODE  
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  𝑔
′′(𝑧) − 𝑎0

2𝑔(𝑧) + 𝑓1 = 0, 

g′(0) − β(g(0) − co) = 0, 𝑔′(𝐿𝑧) + α(𝑔(𝐿𝑧) − 𝑐𝑎) = 0 
(2) 

where 

 𝑓1 =  𝑓0/𝐷𝑧, 𝛽 =  𝛽𝑧/𝐷𝑧, 𝛼 =  𝛼𝑧/𝐷𝑧,  𝑎0
2 =  

𝜋2(𝐷𝑦/𝐿𝑦
2  + 𝐷𝑥/𝐿𝑥

2 )

4𝐷𝑧
. 

We have following solution  

 𝑔(𝑧) =  𝑐1 sinh(𝑎0𝑧)  +  𝑐2 cosh(𝑎0𝑧)  +  𝑓2,  

where 

 𝑐1 =  β/𝑎0(𝐶𝑐2 +  𝑓2 − 𝑐𝑜), 𝐶2 =  
(𝑐𝑎−𝑓2)(𝛼/𝑎0 + 𝛽/𝑎0𝑐3)

𝛽/𝑎0𝑐3 + 𝑐4
, 𝑓2 =  𝑓1/𝑎0

2,  

 𝑐3 =  cosh(𝑎0𝐿𝑧)  +  𝛼/𝑎0 sinh(𝑎0𝐿𝑧), 𝑐4 =  sinh(𝑎0𝐿𝑧)  +  α/𝑎0 cosh(𝑎0𝐿𝑧). 

2.2. Problem in cylindrical coordinates with axial symmetry  

The process of diffusion is considered in 3-D cylinder 

 Ω =  {(𝑟, 𝑧. 𝜙): 0 ≤  𝑟 ≤  𝑅, 0 ≤  𝑧 ≤  𝐿𝑧, 0 ≤  𝜙 ≤  2𝜋}.  

We will consider the stationary boundary value problem with axial symmetry.  

We will find the distribution of concentrations 𝑐 =  𝑐(𝑟, 𝑧) in 𝛺 at the point (𝑟, 𝑧) by solving the 

following special boundary value problem for partial differential equation (PDE) with the source 

function (cosine-function) dependent on the 𝑧-direction: 

  
𝐷𝑟

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) +

𝜕

𝜕𝑧
(𝐷𝑧

𝜕𝑐

𝜕𝑧
) + 𝑓0 𝑐𝑜𝑠

𝜋𝑧

2𝐿𝑧
= 0,  

 ∂𝑐(𝑟, 0)

∂𝑧
=

∂𝑐(0, 𝑧)

∂𝑟
= 0, 𝑐(𝑟, 𝐿𝑧) = 0, (3) 

 
𝐷𝑟

𝜕𝑐(𝑅, 𝑧)

𝜕𝑟
+ 𝛼𝑟 (𝑐(𝑅, 𝑧) − 𝑐𝑎 cos

𝜋𝑧

2𝐿𝑧
) = 0,  

where  𝑓0, 𝑐𝑎 – fixed constants; 

 𝐷𝑟, 𝐷𝑧 – constant diffusion coefficients; 

 𝛼𝑟 – constant mass transfer coefficient in the 3 kind boundary conditions. 

We can obtain the analytical solution of (3) in the following form:  

𝑐(𝑟, 𝑧) =  𝑔(𝑟) 𝑐𝑜𝑠
𝜋𝑧

2𝐿𝑧
, 

where the function 𝑔(𝑟) is solution of boundary value problem for ODE: 

  
𝑔′′(𝑟) +

1

𝑟
𝑔′(𝑟) − 𝑎0

2𝑔(𝑟) + 𝑓1 = 0,  

 𝑔′(0) = 0, 𝑔′(𝑅) + α(𝑔(𝑅) − 𝑐𝑎) = 0, (4) 

 

 
where  

 𝑓1 =  𝑓0/𝐷𝑟, 𝛼 =  𝛼𝑟/𝐷𝑟 𝑎0
2 =  

𝜋2𝐷𝑧/𝐿𝑧
2

4𝐷𝑟
. 

We have following solutions  

 𝑔(𝑟) =  𝐶1𝐼0(𝑎0𝑟) +  𝑓2,  

where  
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 𝑓2 =  
𝑓1

𝑎0
2, 𝐶1 =  

𝛼(𝑐𝑎−𝑓2)

𝑎0𝐼1(𝑎0𝑅) + 𝛼𝐼0(𝑎0𝑅)
,  

and 𝐼0, 𝐼1 – modified Bessel functions. 

2.3. Problem in spherical coordinates with axial symmetry  

The process of diffusion is considered in hemisphere 

 Ω =  {(𝑟, 𝜃, 𝜙): 0 ≤  𝑟 ≤  𝑅, 0 ≤  𝜃 ≤  𝜋/2,0 ≤  𝜙 ≤  2𝜋}.  

We will consider the stationary boundary value problem with axial symmetry.  

We will find the distribution of concentrations 𝑐 =  𝑐(𝑟, 𝜃) 

in Ω at the point (𝑟, 𝜃) by solving the following special boundary value problem for partial 

differential equation (PDE) with the source function (cosine-function) dependent on the 𝜃 -direction: 

  
𝐷𝑟

1

𝑟2

∂

∂𝑟
(𝑟2

∂𝑐

∂𝑟
) + 𝐷θ

1

𝑟2 sin(θ)

∂

∂θ
(sin(θ)

∂𝑐

∂θ
) + 𝑓0 cos(θ) /𝑟2 = 0  

 ∂𝑐(𝑟, 0)

∂θ
=

∂𝑐(0, θ)

∂𝑟
= 0, 𝑐(𝑟, 𝜋/2) = 0 (5) 

 
𝐷𝑟

∂𝑐(𝑅, θ)

∂𝑟
+ α𝑟(𝑐(𝑅, θ) − 𝑐𝑎 cos(θ)) = 0  

where  𝑓0, 𝑐𝑎 – fixed constants; 

 𝐷𝑟, 𝐷θ – constant diffusion coefficients,  

 α𝑟 – constant mass transfer coefficient.  

We can obtain (have obtained) the analytical solution of (5) in the following form:  

 𝑐(𝑟, θ) =  𝑔(𝑟) cos(θ),  

where the function 𝑔(𝑟) is solution of boundary value problem for ODE: 

  𝑟2𝑔′′(𝑟) + 2𝑟𝑔′(𝑟) − 𝑎0
2𝑔(𝑟) + 𝑓1 = 0,  

 𝑔′(0) = 0, 𝑔′(𝑅) + α(𝑔(𝑅) − 𝑐𝑎) = 0, (6) 

where 

  𝑓1 =  𝑓0/𝐷𝑟 ,𝛼 =  𝛼𝑟/𝐷𝑟, 𝑎0
2 =  

2𝐷𝜃

𝐷𝑟
 >  2.  

We have following solutions  

 𝑔(𝑟) =  𝐶1𝑟𝛾  +  𝑓2,  

where  

 𝑓2 =  
𝑓1

𝑎0
2, 𝛾 =  − 0.5 +  √0.25 +  𝑎0

2,  𝐶1 =  
𝛼(𝑐𝑎−𝑓2)

𝑅𝛾−1(𝛾 + 𝛼𝑅)
.  

3. Results and discussion 

This chapter discusses the construction of hyperbolic splines (an approximate solution to a 1-D 

ordinary differential equation boundary value problem) based on the conservative averaging method 

(CAM). 

With the help of the created splines, the 1-D boundary value problems found in the previous chapter 

were solved in three cases – in a parallelepiped (Cartesian coordinates), in a cylinder (cylindrical 

coordinates) and in a hemisphere (spherical coordinates). Spline components – functions contain a 

special parameter a, the numerical value of which determines the accuracy of the calculations of the 

entire spline method – the reduction of the calculation error. 

When creating a spline in the case of Cartesian coordinates, the optimal value of the parameter a 

was calculated analytically (directly with the help of a formula), using the ordinary differential equation 

to which the original 3-D boundary value problem was reduced. 
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In the case of cylindrical and spherical coordinates, a variable - the correction coefficient (𝑘𝑜𝑟) – 

was additionally involved in the error reduction process to calculate the numerical value of the parameter 

a. 

Applying of the parabolic spline, obtained from A. Buikis, the spline functions’ parameter 𝑎 has 

been chosen equal to 0.00001. 

3.1. Averaging method in z-direction using integral spline in Cartesian coordinates 

The conservative averaging method (CAM) is applied to solve the boundary value problem (BVP) 

(2) using the approximate solution – spline. BVP (2) differential equation is integrated for the variable 

𝑧 in the range from 0 to 𝐿𝑧, dividing by 𝐿𝑧. In the differential equation, instead of the function 𝑔(𝑧), a 

spline function 𝑔(𝑧) with two parametric functions 𝑓𝑧1, 𝑓𝑧2 (see below) is inserted. The boundary 

conditions of BVP (2) are applied, and the form (7) is obtained, from which 𝑔𝑎 is calculated. By inserting 

the calculated value 𝑔𝑎 into the spline formula, the approximate solution of BVP (2) is obtained. 

 𝑔(𝑧) =  𝑔𝑎  +  𝑚𝑓𝑧1(𝑧 − 𝐿𝑧/2) +  𝑒𝑓𝑧2(𝑧 − 𝐿𝑧/2),  

where  

 𝑔𝑎  =  
1

𝐿𝑧
∫ 𝑔(𝑧)𝑑𝑧

𝐿𝑧

0
  

is the averaged value,  

 ∫ 𝑓𝑧1𝑑𝑧
𝐿𝑧

0
 =  ∫ 𝑓𝑧2𝑑𝑧

𝐿𝑧

0
 =  0, 

 𝑓𝑧1 =  
0.5𝐿𝑧 𝑠𝑖𝑛ℎ(𝑎(𝑧−0.5𝐿𝑧))

𝑠𝑖𝑛ℎ(0.5𝑎𝐿𝑧)
 , 𝑓𝑧2 =  

𝑐𝑜𝑠ℎ(𝑎(𝑧−0.5𝐿𝑧))−𝐴0

8 𝑠𝑖𝑛ℎ2(0.25𝑎𝐿𝑧)
 𝐴0𝑧 =  

𝑠𝑖𝑛ℎ(0.5𝑎𝐿𝑧)

0.5𝑎𝐿𝑧
,  

and 𝑎 =  𝑎0 is the optimal parameter. 

We can see that the parameter 𝑎 tends to zero, then the limit is the integral parabolic spline [16], 

because of  

 𝐴0 →
1

12
: 𝑓𝑧1 → (𝑧 − 𝐿𝑧/2), 𝑓𝑧2 →

(𝑧−𝐿𝑧/2)2

𝐿𝑧
2 −

1

12
. 

The unknown coefficients 𝑚, 𝑒 we can determine from the boundary conditions of (2): 

1. for 𝑧 =  0, 𝑚𝑑 − 𝑒𝑘 − 𝛽(𝑔𝑎 − 0.5𝑚𝐿𝑧 +  𝑒𝑏 − 𝑐𝑜) =  0,  
2. for 𝑧 =  𝐿𝑧, 𝑚𝑑 +  𝑒𝑘 +  𝛼(𝑔𝑎  +  0.5𝑚𝐿𝑧 +  𝑒𝑏 − 𝑐𝑎) =  0,  

where  

 𝑑 =  (𝑎𝐿𝑧/2) coth(𝑎𝐿𝑧/2), 𝑘 =  (𝑎/4) coth(𝑎𝐿𝑧/4), 𝑏 =  
 (𝑐𝑜𝑠ℎ(𝑎𝐿𝑧/2))−𝐴0

8𝑠𝑖𝑛ℎ2(𝑎𝐿𝑧/4)
.  

Therefore  

 𝑒 =  𝑔𝑒𝑔𝑎  +  𝑎𝑒 , 𝑚 =  𝑔𝑎𝑔𝑚 +  𝑎𝑚, 𝑔𝑒 =  (𝑎11α +  𝑎21β)/𝑑𝑒𝑡, 𝑔𝑚 =  (𝑎22β − 𝑎12α)/𝑑𝑒𝑡, 

 𝑎𝑒 =  (𝑐𝑜𝑎21β +  𝑐𝑎𝑎11α)/𝑑𝑒𝑡, 𝑎𝑚 =  (𝑐𝑎𝑎12α − 𝑐𝑜𝑎22β)/𝑑𝑒𝑡, 𝑑𝑒𝑡 =  𝑎11𝑎22 +  𝑎12𝑎21,  

 𝑎11 =  𝑑 +  β𝐿𝑧/2, 𝑎12 =  𝑘 +  𝑏𝛽, 𝑎21 =  𝑑 +  α𝐿𝑧/2 , 𝑎22 =  𝑘 +  𝑏𝛼. 

Now the boundary value problem (2) is in the form 

 1/𝐿𝑧(𝑔′(𝐿𝑧) − 𝑔′(0)) − 𝑎0
2𝑔𝑎 + 𝑓1 = 0, 𝑔′(𝐿𝑧) − 𝑔′(0) = 2𝑒𝑘   (7) 

or  

𝑔𝑎  =  
𝑓1𝐿𝑧 +  2𝑘𝑎𝑒

2𝑘𝑔𝑒 +  𝑎0
2𝐿𝑧

. 

Example 1 

We consider the following parameters for solving the boundary value problem (7): 

 𝑓0 =  0.1, 𝐿𝑧 =  1, 𝐿𝑥 =  1, 𝐿𝑦 =  1, 𝐷𝑥 =  10−2, 𝐷𝑦 =  10−3, 𝐷𝑧 =  10−4,  

 𝛼𝑧 =  0.3, 𝛽𝑧 =  0.1, 𝑐0 =  5, 

 𝑐𝑎  =  2, 𝑎0 =  16.4747. 
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The maximal errors (𝑒𝑟) of the solutions of the parabolic and hyperbolic spline methods are 

compared, here the maximal error - the maximal difference (calculated by absolute value) between the 

obtained spline method solution and the analytical (exact) solution of the corresponding 1-D boundary 

value problem. 

We have the following maximal errors: for hyperbolic spline 𝑒𝑟ℎ =  2 ∙ 10−9, for parabolic spline 

𝑒𝑟𝑝 =  0.9653 (see 𝑔(𝑧) in Fig. 1 and 𝑐(𝑥, 0, 𝑧) in Fig. 2).  

  

Fig. 1. Solution 𝒈(𝒛), 𝒆𝒓𝒉 = 𝟐 ∙ 𝟏𝟎−𝟗, 

𝒆𝒓𝒑 = 𝟎. 𝟗𝟔𝟓𝟑 
Fig. 2. Solution 𝒖 = 𝒄(𝒙, 𝟎, 𝒛) for  

hyperbolic spline 

3.2. Averaging method in r-direction using integral spline in cylindrical coordinates 

Applying CAM for solving (4) similarly Cartesian coordinates case (3.1) we use spline 𝑔(𝑟) with 

two fixed parametrical functions 𝑓𝑟1, 𝑓𝑟2  

 𝑔(𝑟) =  𝑔𝑎  +  𝑚𝑓𝑟1(𝑟 − 𝑅/2) +  𝑒𝑓𝑟2(𝑟 − 𝑅/2),  

where  

 𝑔𝑎  =  
1

𝑅2 ∫ 𝑟𝑔(𝑟)𝑑𝑟
𝑅

0
 is the averaged value, ∫ 𝑟𝑓𝑟1𝑑𝑟

𝑅

0
 =  ∫ 𝑟𝑓𝑟2𝑑𝑟

𝑅

0
 =  0,  

𝑓𝑟1 =  
𝑅2 𝑎2sinh(𝑎(𝑟 − 0.5𝑅))

4 sinh(0.5𝑎𝑅)
, 𝑓𝑟2 =  

cosh(𝑎(𝑟 − 0.5𝑅)) − 𝐴0

8 sinh2(0.25𝑎𝑅)
, 𝐴0 =  

sinh(0.5𝑎𝑅)

0.5𝑎𝑅
, 

 𝑑 =  𝑅𝑎/2 coth(𝑎𝑅/2), 𝑎 =  𝑎0 +  𝑘𝑜𝑟,  

where 𝑘𝑜𝑟 – correction parameter.  

Correction parameter (𝑘𝑜𝑟) – the minimal difference (calculated by the absolute value) between the 

maximal errors of two adjacent spline method solutions (which differ from each other by a sufficiently 

small change in the correction coefficient). 

The formula 𝑎 =  𝑎0 +  𝑘𝑜𝑟 was used to obtain the minimal error of calculations, 𝑎 - parameter of 

the approximate solution of the spline method, 𝑎0 – constant, depending on the parameters of the 

respective boundary-value problem. 

We can see if the parameter 𝑎 tends to zero, then the limit is the integral parabolic spline.  

The unknown coefficients 𝑚, 𝑒 we can determine from boundary conditions (4): 

1. for 𝑟 =  0, 𝑚𝑑𝑟 − 𝑒𝑘 =  0,  
2. for 𝑟 =  𝑅, 𝑚𝑑𝑟  +  𝑒𝑘 +  𝛼(𝑔𝑎  +  𝑚𝑏𝑚 +  𝑒𝑏𝑒 − 𝑐𝑎) =  0,  

where  

 𝑘 =  (𝑎/4) 𝑐𝑜𝑡ℎ(𝑎𝑅/4), 𝑑𝑟 =  0.5 ∙ 𝑅𝑑𝑎2/(𝑑 − 1), 𝑏𝑒 =  
 (𝑐𝑜𝑠ℎ(𝑅/2))−𝐴0

8𝑠𝑖𝑛ℎ2(𝑎𝑅/4)
, 𝑏𝑚 =  

𝑅2𝑎2

4(𝑑−1)
.  

Therefore  
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 𝑒 =  (𝑐𝑎 − 𝑔𝑎)/𝑔1, 𝑚 =  𝑒𝑘/𝑑𝑟, 𝑔1 =  2𝑘/α +  𝑏𝑚𝑘/𝑑𝑟  +  𝑏𝑒 .  

Now the boundary value problem (4) is in the form 

2/𝑅2(𝑅𝑔′(𝑅)) − 𝑎0
2𝑔𝑎 + 𝑓1 = 0, 𝑔′(𝑅) = 2𝑒, (8) 

or  

𝑔𝑎  =  
𝑓1𝑔1𝑅 +  4𝑘𝑐𝑎

4𝑘 +  𝑎0
2𝑔1𝑅

. 

Example 2 

We consider the following parameters for solving the boundary value problem (8): 

 𝐿𝑧 =  𝑅 =  1, 𝑓0 =  − 0.1,α𝑟 =  10.01, 𝑐𝑎  =  10, 𝐷𝑟 =  10−2, 𝐷𝑧 =  10−2, 𝑎0 =  1.5708. 

Here – in the case of cylindrical coordinates (and also in the case of spherical coordinates, see 

Example 3), comparing spline methods, along with the maximal error, the corresponding correction 

coefficient (𝑘𝑜𝑟) has also been calculated. 

We have following maximal errors: for hyperbolic spline  𝑒𝑟ℎ =  0.00084, 𝑘𝑜𝑟 =  − 0.202 (for 

𝑘𝑜𝑟 =  − 0.201, 𝑒𝑟ℎ  =  0.00064, but for 𝑘𝑜𝑟 =  − 0.200, 𝑒𝑟ℎ =  0.0016) for parabolic 

𝑒𝑟𝑝 =  0.7476 (see 𝑔(𝑟) in Fig. 3 and 𝑐(𝑟, 𝑧) in Fig. 4). If α𝑟 =  0.01 then 𝑒𝑟ℎ  =  0.00032, 

𝑒𝑟𝑝 =  0.3412,  but for 𝑓0 =  1.01: 𝑒𝑟ℎ =  0.00079, 𝑒𝑟𝑝 =  0.8412. 

 

 

 

 

Fig. 3. Solution 𝒈(𝒓) 

, 𝒆𝒓𝒉 = 𝟎. 𝟎𝟎𝟎𝟖𝟒 𝒆𝒓𝒑 = 𝟎. 𝟕𝟒𝟕𝟔 

Fig. 4. Solution 𝒖 = 𝒄(𝒓, 𝒛)  

for hyperbolic spline 

3.3. Averaging method in r-direction using integral spline in spherical coordinates 

Applying CAM for solving (6) similarly cylindrical coordinates case (3.2) we use spline 𝑔(𝑟) with 

two fixed parametrical functions 𝑓𝑟1, 𝑓𝑟2  

 𝑔(𝑟) =  𝑔𝑎  +  𝑚𝑓𝑟1(𝑟 − 𝑅/2) +  𝑒𝑓𝑟2(𝑟 − 𝑅/2),  

where  

 𝑔𝑎  =  
1

𝑅2 ∫ 𝑟𝑔(𝑟)𝑑𝑟
𝑅

0
 is the averaged value, ∫ 𝑟𝑓𝑟1𝑑𝑟

𝑅

0
 =  ∫ 𝑟𝑓𝑟2𝑑𝑟

𝑅

0
 =  0,  

 𝑓𝑟1 =  
0.5𝑅 𝑠𝑖𝑛ℎ(𝑎(𝑟−0.5𝑅))

𝑠𝑖𝑛ℎ(0.5𝑎𝑅)
, 𝑓𝑟2 =  

𝑐𝑜𝑠ℎ(𝑎(𝑟−0.5𝑅))−𝐴0

8 𝑠𝑖𝑛ℎ2(0.25𝑎𝑅)
, 𝐴0 =  

𝑠𝑖𝑛ℎ(0.5𝑎𝑅)

0.5𝑎𝑅
, 

 𝑎 =  𝑎0 +  𝑘𝑜𝑟,  

where  𝑘𝑜𝑟 – the correction parameter. 

We can see if the parameter 𝑎 tends to zero, then the limit is the integral parabolic spline [16]. 

The unknown coefficients 𝑚, 𝑒 we can determine from boundary conditions (6): 
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1. for 𝑟 =  0, 𝑚𝑑 − 𝑒𝑘 =  0,  
2. for 𝑟 =  𝑅, 𝑚𝑑 +  𝑒𝑘 +  𝛼(𝑔𝑎  +  𝑚𝑅/2 +  𝑒𝑏𝑒 − 𝑐𝑎) =  0,  

where  

 𝑘 =  (𝑎/4) 𝑐𝑜𝑡ℎ(𝑎𝑅/4), d =  0.5 ∙ 𝑅𝑎𝑐𝑜𝑡ℎ(𝑎𝑅/2), 𝑏 =  
 (𝑐𝑜𝑠ℎ(𝑅/2))−𝐴0

8𝑠𝑖𝑛ℎ2(𝑎𝑅/4)
.  

Therefore  

 𝑒 =  (𝑐𝑎 − 𝑔𝑎)/𝑔1, 𝑚 =  𝑒𝑘/𝑑, 𝑔1 =  2𝑘/α +  𝑏 +  0.5𝑘𝑅/𝑑.  

Now the boundary value problem (6) is in the form 

1/𝑅(𝑅2𝑔′(𝑅)) − 𝑎0
2𝑔𝑎 + 𝑓1 = 0, 𝑔′(𝑅) = 2𝑒𝑘 (9) 

or  

𝑔𝑎  =  
𝑓1𝑔1𝑅 +  2𝑘𝑅𝑐𝑎

2𝑅𝑘 +  𝑎0
2𝑔1

. 

Example 3 

We consider the following parameters for solving the boundary value problem (9): 

 𝑅 =  2, 𝑓0 =  0.1,𝛼𝑟 =  0.003, 𝑐𝑎  =  1, 𝐷𝑡 =  10−2, 𝐷𝑟 =  10−4, 𝑎0 =  14.142. 

We have obtained the following maximal errors with their corresponding correction parameters: 

for hyperbolic spline 𝑒𝑟ℎ =  0.0350, 𝑘𝑜𝑟 =  − 7.0 (for 𝑘𝑜𝑟 =  − 7.005, 𝑒𝑟ℎ =  0.0351, bat for 

𝑘𝑜𝑟 =  − 7.01, 𝑒𝑟ℎ  =  0.0352), for parabolic 𝑒𝑟𝑝 =  1.968. (see 𝑔(𝑟) in Fig. 5 and 𝑐(𝑟, 𝜃) in Fig. 6). 

If 𝑅 =  1 then 𝑒𝑟ℎ  =  0.0306, 𝑘𝑜𝑟 =  . 0, (for 𝑘𝑜𝑟 =  − 0.1, 𝑒𝑟ℎ  =  0.0310$, bat for 𝑘𝑜𝑟 =  0.01, 

𝑒𝑟ℎ  =  0.0311) 𝑒𝑟𝑝 =  1.9664. 

 

 

 

 

Fig. 5. Solution 

𝒈(𝒓), 𝒆𝒓𝒉 =  𝟎. 𝟎𝟑𝟓𝟎 𝒆𝒓𝒑 =  𝟏. 𝟗𝟔𝟖 

Fig. 6. Solution 𝒖 =  𝒄(𝒓, 𝜽)  

for hyperbolic spline 

4. Conclusions 

1. The article discusses a 3-D stationary diffusion boundary value problem (BVP) with a special 

source function in various three-dimensional domains – a 3-D parallelepiped, a 3-D cylinder, and a 

3-D hemisphere. The 3-D BVP in each of the mentioned domains is reduced to a 1-D ordinary 

differential equation boundary value problem in three cases – a parallelepiped (in Cartesian 

coordinates), a cylinder (in cylindrical coordinates) and a hemisphere (in spherical coordinates). 

Based on the conservative averaging method (CAM), the hyperbolic spline method was developed 

for solving the above-mentioned 1-D BVP in three cases – a parallelepiped, a cylinder and a 

hemisphere, considering the above-mentioned coordinates. Analytical solutions of the relevant 1-D 

boundary value problems (in Cartesian, cylindrical and spherical coordinates) were also obtained 
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to assess the accuracy of the developed hyperbolic spline method, as well as the accuracy of the 

parabolic spline method used in the calculations. 

2. The most important thing in determining the calculation accuracy of the hyperbolic spline method 

in all three cases (Cartesian, cylindrical and spherical coordinates) was the calculation of the spline 

function parameter 𝑎. In the case of Cartesian coordinates, it could be calculated analytically, while 

in the case of cylindrical and spherical coordinates the parameter was calculated by introducing 

(defining) an additional element in the calculation process – the correction parameter 𝑘𝑜𝑟. 

3. Higher calculation accuracy with hyperbolic splines was achieved in the case of Cartesian 

coordinates, for example, (𝑒𝑟ℎ- maximal error for hyperbolic splines, 𝑒𝑟𝑝 – parabolic). The above 

comparison and other numerical experiments show the advantage of the hyperbolic spline method 

over parabolic splines. In the case of cylindrical and spherical coordinates, the accuracy of 

calculations is lower, for example, in cylindrical coordinates – 𝑒𝑟ℎ =  0.00084, 𝑘𝑜𝑟 =  − 0.202 

(𝑘𝑜𝑟 – correction parameter), 𝑒𝑟𝑝 =  0.7476; in spherical coordinates – 𝑒𝑟ℎ =  0.0350,  

𝑘𝑜𝑟 =  −  7.0, 𝑒𝑟𝑝 =  1.968. Lower accuracy indicators in the case of cylindrical and spherical 

coordinates indicate a higher degree of complexity of the problem to be solved – first of all, this is 

attributable to the configuration of the 3-D domain, then – additional steps must be taken in the 

execution of the algorithm (for example, including the correction parameter 𝑘𝑜𝑟 in the solution 

process). 

4. Despite the lower calculation accuracy obtained in the case of cylindrical and spherical coordinates, 

it is necessary to consider the more diverse spheres and possibilities of their application, therefore 

the created hyperbolic spline mathematical model is fully usable in the current situation, at the same 

time it can also be considered as an object of further research with the aim of its improvement. 
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